数式は言葉です

いきなりですが、

5a=3b

という式は、何を意味しているのでしょうか?

「aを5倍したものと、bを3倍したものが等しい」

「aの5倍は、bの3倍に等しい」

ということですね?

ここから何がわかるのかというと、

「aは5倍しないといけない。bは3倍で済む。」
「…ということは、aの方が小さいな」

ということがわかります。


上の式の両辺を5でわると、(等式の性質)

となります。

では、下の式は何を意味しているのでしょうか?

つまり、

「a は、b を5等分したうちの3個分である」

ということがわかります。

線分図にすると、こんな感じ ☟

つまり、

a:b=3:5

だとわかりますね。

大切なのは、

言葉と数式を結び付けて考えることです。

(ちなみに、北辰H30⑤でこの考え方を利用した問題が出ています)


それでは、

例題

半径が r 、中心角が a° のおうぎ形Aと、半径がAの半分で中心角がAの2倍であるおうぎ形Bがある。このとき、次の問いに答えなさい。

(1)Bの弧の長さは、Aの弧の長さの何倍ですか。


(2)Bの面積は、Aの面積の何倍ですか。


公式

解答

(1)まず、おうぎ形は円の一部であるという認識が一番重要です。

そして、自分で図を描いてみて、情報を書き込んでいきます。

この問題を例題として選んだ理由は、おうぎ形Bの「半径」と「中心角」の部分に上手く情報を代入できない生徒が多いからです。

どうでしたか?↓

答え 1倍


(2) こちらも図を描いて、情報を書き込んでいきます。

文字どうしの約分も何気にポイントでした。

次回、北辰の類題を up しますので、お楽しみに。

(だれも楽しみにしてねーよ!という声が聞こえますが…)

蒼進塾(そうしんじゅく)~さいたま市~真剣に努力する姿勢を育む

本気で成績を上げたい生徒を全力でサポートする塾です。現在の成績に関係なく未来に向けて真剣に努力する生徒を応援します。

0コメント

  • 1000 / 1000